Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 19th Nano Congress for Next Generation Brussels,Belgium.

Submit your Abstract
or e-mail to

[email protected]
[email protected]
[email protected]

Day 2 :

Keynote Forum

A I Archakov

Institute of Biomedical Chemistry, Russia

Keynote: AFM physicochemical properties and activity of single protein molecules of CYP 102A1 (BM3)

Time : 10:00

Nano Congress 2017 International Conference Keynote Speaker A I Archakov photo
Biography:

A I Archakov is a Full Member of the Russian Academy of Sciences and Professor & Scientific Advisor at Institute of Biomedical Chemistry. He has organized scientific school to study molecular organization and functioning of oxygenase cytochrome P450-containing systems, molecular mechanisms of the structure and function of membranes and biological oxidation. He has guided the institute’s members in developing a fundamentally new pharmaceutical composition “Phosphogliv” with antiviral activity for the treatment of liver diseases of various etiology. He is the pioneer in the development of proteomics in Russia. Currently, he is the International “Human Proteome” Project Coordinator in Russia. He is one of the Russia’s top 100 scientists with Hirsch number 27. He is the author of more than 700 scientific works including about 482 scientific articles, 6 monographs, 30 patents and author’s certificates. He was Scientific Advisor for 15 Doctors’ and more than 60 PhD theses. He is the winner of three state prizes of the USSR, the RSFSR and of the Russian Federation.

Abstract:

Atomic force microscopy (AFM) is a nanotechnological multifunctional molecular platform for measuring of physicochemical and functional properties of single proteins molecules. AFM was used for visualization of oligomeric state, activity, elasticity and electron transfer of single molecules of CYP 102A1 (BM3). It was shown that BM3 in water solution exists as monomer and different oligomers by use of sharp and super sharp AFM probes. Functional activity of single monomers and oligomers of BM3 was measured by AFM as well. The BM3 height fluctuations amplitude (HFA) during catalytic cycle is much larger than the HFA of the enzyme molecules in the resting state. It was found that an average HFA of dimers P450 BM3 during catalytic cycle increased up to 5.0±2Å·s-1 that was 2.5 times larger than a HFA of P450 BM3 in the resting state. It was obtained that the HFA of immobilized on mica cytochrome P450 BM3 depends on temperature, and 22˚C is a peak of this temperature profile. Mass spectrometry (MS) measurements were used to obtain a time course of a hydroxylation product of lauric acid oxidation during the enzymatic reaction of P450 BM3 in two cases: when enzyme was solubilized in the volume and when it was immobilized on the mica chip. In both cases the number of enzyme molecules was ≈1010, and the kinetics was linear during the first 10 minutes. It was shown that in the case of solubilized enzyme kcat=10-3 s-1, and in the case of immobilized enzyme kcat=0.4·10-3 s-1 that was 2.5 times less than the first one. The purpose of our work was to find a relationship between enzyme HFA and its catalytic activity. Therefore, AFM data was analyzed together with MS data and the following equation was obtained: kcat= β· (exp(ΔA/ A0)-1, where kcat – is a catalytic rate constant (s-1); β is a proportionality factor (s-1); ΔA = Δ Ā – A0 (Å), where Ā and A0 are the average amplitudes of P450 BM3 height oscillations in the active and resting states, respectively. The value β = 5·10-6 s-1 was calculated from time dependence of reaction curves measured by AFM and MS. Elasticity of single protein was measured based on deformation of this protein under AFM probes with various radii of curvature. Young’s modulus of BM3 molecules depends on AFM modes. Based on the obtained data, the following conclusions may be made: the enzyme catalytic activity of single molecules can be measured as a HFA of BM3 oscillation during catalytic cycle.

Keynote Forum

Liqiu “Rick” Wang

The University of Hong Kong, Hong Kong

Keynote: Small is big: magic microfluidic droplets

Time : 10:35

Nano Congress 2017 International Conference Keynote Speaker Liqiu “Rick” Wang photo
Biography:

Liqiu “Rick” Wang received his PhD from University of Alberta (Canada) and is currently a Full Professor in the Department of Mechanical Engineering, the University of Hong Kong. He is also the Qianren Scholar (Zhejiang) and serves as the Director and the Chief Scientist for the Laboratory for Nanofluids and Thermal Engineering, Zhejiang Institute of Research and Innovation (HKU-ZIRI), the University of Hong Kong. He has over 30 years of university experience in thermal & power engineering, energy & environment, transport phenomena, materials, nanotechnology, biotechnology, and applied mathematics in Canada, China/Hong Kong, Singapore and the USA, and 2 years of industrial experience in thermal engineering and technology management. He has secured over 70 projects funded by diverse funding agencies and industries including the Research Grants Council of Hong Kong, the National Science Foundation of China and the Ministry of Science and Technology of China, totaling > US$ 15m (excluding US$ 2.2 billion for AMS project). He has published 10 books/monographs and 356 book chapters and technical articles, many of which have been widely used by researchers all over the world, and is ranked amongst the top 1% of most-cited scientists (ESI). He has also filed 22 patent applications and led an international team in developing a state-of-the-art thermal control system for the Alpha Magnetic Spectrometer (AMS) on the International Space Station.

 

Abstract:

Droplets of nanoliter and subnanoliter are useful in a wide range of applications, particularly when their size is uniform and controllable. Examples include biochemistry, biomedical engineering, food industry, pharmaceuticals, and material sciences. One example of their many fundamental medical applications is the therapeutic delivery system for delivering site-specific therapy to targeted organs in the body and as the carriers for newer therapeutic options. The size, the size distribution, the generation rate and the effective manipulation of droplets at a scale of nano, pico, femto and even atto liters are critical in all these applications. We make an overview of microfluidic droplet generation of either passive or active means and report a glass capillary microfluidic system for synthesizing precisely controlled monodisperse multiple emulsions and their applications in engineering materials, nanofluids, microfibers, embolic particles and colloidosome systems. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included is the contrast among different approaches of either passive or active nature.

  • Plenary Session

Session Introduction

Xochitl Dominguez Benetton

Flemish Institute for Technological Research, Belgium

Title: Flexible and versatile nanoparticle synthesis platform by gas-diffusion electrocrystallization
Speaker
Biography:

Xochitl Dominguez Benetton completed her PhD at the Mexican Petroleum Institute. She started her early career as a Research Professor at the University of Yucatan, in Mexico, followed by Postdoctoral Research at the National Polytechnic Institute of Toulouse, in France. Currently, she is a Senior Scientist at the Flemish Institute for Technological Research where she has conducted research on Electrochemical Systems, leading to more than 40 papers in reputed journals, as well as 5 patents. She invented the process of gas-diffusion electrocrystallization, and is currently developing a wide-ranging library of functional nanomaterials.

Abstract:

Gas-diffusion electrocrystallization (GDEx) is a new electrochemical process that conveys the synthesis of crystalline nanomaterials with well controlled and narrowly distributed properties that relate to specific functionalities. GDEx is a one-pot rapid process involving a porous cathode, an aqueous electrolyte containing metal or metalloid ions, and an oxidant gas, in which colloidal dispersions of nanomaterials or solid nanoparticles are synthesized. The general principles and mechanism through which GDEx operates will be introduced. Cerium oxide nanoparticles with controlled crystallite sizes and compositions, which result in tunable oxygen sorption capacities and kinetics, have been synthesized using GDEx. These can be tailored for pro-oxidant or anti-oxidant applications of interest for electronic packaging, oxidative stress alleviation, or cancer therapy. GDEx has also been used to produce iron oxide nanoparticles in which the ratio of heamatite (Fe2O3) and magnetite (Fe3O4) can be tweaked, providing the possibility to regulate their magnetic susceptibility. These materials are studied for molecular diagnostics. Solid nanoparticles of herbertsmithite, have been obtained. These Cu/Zn-based nanoparticles may have applications in data storage, high-temperature superconductors and for so-called “quantum-entangled” batteries. Finally, when using manganese, compositions with birnessite and hausmannite — which may intercalate water and alkali metals — have been synthesized, providing promising materials for batteries electrodes or catalysts. GDEx is revealed as a new route to synthesize a wide range of nanoparticles, flexibly and with versatile control of composition, morphology, and physicochemical parameters, which in turn tailor specific functionalities.

Speaker
Biography:

Kiminori Sato has completed his PhD at Department of Applied Physics, The University of Tokyo and then Postdoctoral Studies at Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Department of Physics, Washington State University, and National Institute of Advanced Industrial Science and Technology (AIST). He is now an Associate Professor of Department of Environmental Sciences, Tokyo Gakugei Univeristy.

Abstract:

Two-dimensional (2D) nanomaterials, as e.g., inorganic layered mineral, graphene, and metallic nanosheet, have been attracting increasing interest in the field of energy- and environment-related advanced materials owing to their unique properties on catalysis, adsorption, and electronic transport. It is known that the inorganic layered nanoparticles spontaneously organize into well-defined local structures through the mutual interactions of 2D nanosheets in the presence of water molecules. This spontaneous ordering of 2D nanosheets induced by water molecules, so-called self-assembly of 2D nanosheets, is found to produce the local molecular structures that is responsible for environmental functionalities Here, local molecular and electronic structures created by 2D nanosheets are explored for the purpose of enviromental application, as e.g., an improvement of Cs specific adsorption, enhancement of CO2 adsorption, appearance of proton conductivity, and so on. The open spaces formed by 2D nanosheets with the sizes ranging from Ångstrom to nanometer are highlighted on the basis of the results of element-specific positron annihilation spectroscopy togther with molecular dynamic (MD) simulation.

Darja Lisjak

Jozef Stefan Institute, Slovenia

Title: Plate-like nanomagnets for new advanced materials
Speaker
Biography:

Darja Lisjak completed her PhD in 1999 at Faculty of Chemistry and Chemical Technology of University of Ljubljana. She was at Jožef Stefan Institute for most of her research time, a Visiting Researcher at University of Pennsylvania and University of Trieste, and a Senior Researcher at Center of Excellence COBIK. She is now a Senior Researcher at Department for Materials Synthesis at Jožef Stefan Institute and an Associated Professor at Jožef Stefan International Postgraduate School. She published more than 85 scientific papers and was awarded, together with Prof. Alenka Mertelj, a Zois recognition for the development of ferromagnetic suspensions.

                                                             

Abstract:

Functionality of materials can be enriched by the anisotropy. Crystalline and/or shape anisotropy of materials results in orientationally dependent physical properties. For example, a class of materials, named hexaferrites, shows uniaxial magnetic anisotropy due to their anisotropic crystal structure of magnetoplumbite type. Hexaferrites crystallize in the shape of thin hexagonal platelets with a magnetic easy in the direction of the c-crystal axis, i.e., perpendicular to the basal crystal plane. Consequently, a single hexaferrite platelet forms a nanomagnet, with a direction dependent response to an applied magnetic field. In order to exploit the platelets' specific magnetic properties they should be synthesized in wet and used in the form of stable suspensions. Subsequently, plate-like nanomagnets can be: (i) embedded in different matrices to form composites, (ii) assembled from the suspensions into higher structures, films or bulk materials, or (iii) hybridized with functional organic moieties; all resulting in new advanced materials. In this contribution we present our original approach for the synthesis of hexaferrite plate-like nanomagnets, including the possibilities for tuning different interparticle forces that allowed for the development of self-biased thick films, new magneto-optic composites and ferromagnetic suspensions. A specific role of the magnetocrystalline and shape anisotropy of these nanomagnets for the realization of the new advanced material will be elucidated and their potential applications will be presented.

Speaker
Biography:

Fernando A Castro is the Knowledge Leader for the Engineering, Materials and Electrical Science Department at the UK’s National Physical Laboratory. He also holds several international roles, such as Chair of TWA36 Organic Electronics of VAMAS, UK Expert within IEC TC119 - Printed Electronics, Associate Editor of the journal Science and Technology of Advanced Materials, Member of the Steering Committee of the European Energy Research Alliance – JP Photovoltaics. He has chaired large international conferences on Nanomaterials, Metrology and Photovoltaics, has delivered over 30 keynote/invited talks and has publised over 50 papers in high-quality peer-review journals.

Abstract:

Numerous new technologies rely on understanding the key role of nanoscale properties in defining the performance of electronic and optoelectronic devices. This has required the development of new measurement techniques, that can probe different device properties at increasing spatial resolution. However, despite significant progress, existing nanoscale characterisation techniques normally can only measure either electrical or spectroscopic properties, but not both simultaneously. This makes correlation of structure and property very challenging. Additionally, high-resolution information is rarely obtained simultaneously in all three dimensions. For instance, scanning probe measurements allow high lateral resolution but are typically surface techniques, with poor information about the subsurface. In this presentation, we demonstrate a novel method that allows non-destructive, simultaneous measurements of topographical, electrical and optical microscopy at the nanoscale (<20 nm resolution) by combining tip-enhanced optical spectroscopy (photoluminescence and Raman) with photocurrent AFM. We demonstrate that this approach offers subsurface sensitivity that can be exploited to provide molecular information with nanoscale resolution in all three spatial dimensions. We apply this method to organic solar cells and show that we are able to correlate local nanoscale composition to photocurrent generation, including the direct identification of impurities within nanoscopic domains of operating solar cells. The multi-parameter measurement approach demonstrated here, allows to directly identify the impact of film nanostructure on optoelectronic function and avoids the challenge associated with post processing image registration, sample contamination or degradation when measurements are performed separately. We expect it will play a significant role in guiding the design of nanomaterial-based optoelectronic devices.

Speaker
Biography:

J. Jou has completed his PhD in 1986 from University of Michigan, Ann Arbor, Michigan, USA, and worked as a postdoctoral visiting scientiest at IBM-Almden Research Center, San Jose, CA, USA from 1986 to 1988, before joining National Tsing Hua University. He has published more than 140 papers in reputed journals and been granted more than 60 patents from USA, China and Taiwan.

Abstract:

Nano structures enable organic light-emitting diode (OLED) devices to be fabricated with with relatively high efficiency and brightness, opening up a new era for high quality displays and lighting. Along with the incorporation of nano-scale carrier-modulation-interlayer(s) in between emission layers containing sunlight emission complementary dyes, sunlight-style OLED can be obtained with color or color temperature mimicking that of the sun throughtout the entire daytime. We are also able to fabricate blue hazard free, low color temperature candlelight-style OLED by employing candlelight complementary emitters, namely orange-red, yellow, green, and sky-blue. The resultant candlelight OLED, that exhibits a 1,900K color temperature exactly like that of candles or oil lamps, is friendly to human eyes, physiologies, ecosystems, artifacts, and night-skies. Specifically, it is at least 10 times safer from retina protection perspective or 5 times better for melatonin to naturally occur after dusk, as comparing with the blue light-enriched white OLED, LED and CFL counterparts. We will hence present the device structure, physics and engineering behind the serendipity of the first sunlight-style OLED, how the nano-interlayer modulates the injection of carriers and their recombination, and why and how tremendous efforts have then after been moved to the development of  a 'good light' that is blue hazard free, high in light-quality and   energy-saving. The presentation will also cover global attention and development progress of the candlelight OLED.

  • Poster Session

Session Introduction

Dina Morshedi

National Institute of Genetic Engineering and Biotechnology, Iran.

Title: Using Nanocarriers against Synucleinopathies
Speaker
Biography:

She is Faculty member of National Institute of Genetic Engineering and Biotechnology since 2002 and also Research assistant in an Institute of Biochemistry and Biophysics (IBB), Tehran University since 2005-2009.

Abstract:

α-Synuclein (α-Syn) is  a protein presence in the brains of a range of neurodegenerative disorders’ patients as plaque-like compact structures in the form of amyloid fibrils.  There is a strong relationship between α-Syn amyloid fibrillation and the pathology of the neurodegenerative disorders such as Parkinson’s disease. There is a serious effort to apply the compounds, known as small molecules, with inhibitory effects on the different steps of α-SN fibrillation and also its related neurotoxicity. However, the small molecules can possess some problems like high hydrophobicity/ low solubility in physiological fluids, instability, and difficulty in passing across blood brain barrier (BBB). In this respect, employing of nanocarriers has been pointed because of a lot of advantages i.e. biocompatibility, easy surface modification, low immunogenicity, protecting cargo against enzymatic degradation. In this regard we used three different nanocarriers including serum albumin nanoparticles (SA- NPs)([1], mesoporous silica nanoparticles (MS-NPs) [2] and neutral charged nanoliposomes(NC-NLPs). We found that each kind of nanocarrier possess specific characters when applying for loading drugs or treating α-Syn or neuronal cells. SA- NPs with a moderate drug loading efficiency (DLE) for polyphenols, showed some inducing effect on α-Syn fibrillation when treating with bare SA- NPs. Although MS-NPs with similar DLE did not show inducing effect on α-Syn fibrillation, they had a small neurotoxicity effect. On the other hand,  NC-NLPs had high DLE for polyphenols and also they did not indicate any considerable induction on the α-Syn fibrillation or any neurotoxicity effects. It seems that NC-NLPs have more potential for using regarding synucleinopathies treating than the two other NPs.

Speaker
Biography:

Xiaoling Lu is pursuing her PhD study at University of Applied Sciences Kaiserslautern, Germany. Her academic focus is about reduced graphene-oxide based opto-electronic biosensor platform for detecting prostate cancer biomarkers.

 

Abstract:

Chemically exfoliated graphene-oxide (GO) is being exploited due to its similarity to graphene and tested out as an alternative to overcome the dilemma that graphene is facing towards wafer-scale and robust device preparation. In this work, we prepared GO thin-films in the manner of wafer scale by the spin-coat technique on the top of interdigitated electrodes (IDEs) with glass as substrates. The isolated GO thin-films are transformed into conductive rGO thin-films by thermal reduction. The residual -COOH groups on the surface of rGO thin film provide diverse possibilities of chemical functionalization to covalently immobilize the receptor molecules. An in-line impedimetric spectroscopy based rGO thin-films as transducer layers are tested out for label-free detection of Prostate Cancer Specific Antigen (PSA). This established biosensor exhibits ultra-sensitivity and announced sensing range because of the combination effect of tunable fermi level and fast charge/discharge behaviour of nanocapcitors. The pronounced PSA detection scale ranges from 33 fM to 330 nM at frequency 1000 Hz.

Speaker
Biography:

Alexander Krivcov is doing his PhD at the University of Applied Sciences Kaiserslautern with the topic “Characterisation of superparamagnetic nanoparticles for biomedical applications with Magnetic Force Microscopy (MFM)”.

Abstract:

 

Superparamagnetic nanoparticles (SPNs) are of increasing  interest in biomedicine. The wide range of applications, from diagnostic (Magnetic Resonance Imaging, MRI) to cancer-cells treatment (hyperthermia), promises an intensive use possibility. However, detection and characterization of SPNs at single particle level especially in biological samples remains a challenge. Therefore, techniques which can provide spatial distribution and magnetic properties of single magnetic nanoparticles are highly desirable.

Magnetic Force Microscopy (MFM) can be used to detect and spatially localize single SPNs. However, arising magnetic signal from nanoparticles could be disturbed and covered by other existing forces. One of the strongest disturbing forces is the electro-static behaviour of the probes. Due to the conductivity of the MFM measuring tip, both, magnetic and electro-static, forces are detected simultaneously.

In this work different approaches to minimize the electro-static interaction between probe and tip are discussed. We showed the possibility to reduce the electro-static force by choosing substrates with higher conductivity. Furthermore the electro-static behaviour can be reduced using Electrostatic Force Microscopy (EFM) and Kelvin Probe Force Microscopy (KPFM) combined with MFM.

Those approaches are investigated to select the magnetic force and therefore allow MFM to serve as an excellent detecting technique which makes it possible to localize single magnetic nanoparticles on substrates, embedded in polymers and injected in biomaterial.

 

  • Speaker Session
Speaker
Biography:

Prof. Han-Yong Jeon, geosynthetics/technical organic materials researcher and he was the 32nd President of Korean Fiber Society (2014~2015). He has published more than 794 papers in domestic and international conferences. He wrote 19 texts including 'GEOSYNTHETICS’ and also published 117 papers in domestic & international journals. He has awards of Marquis Who'sWho - Science and Engineering in 2003~2016 and also, he got the 33rd Academy Award of Korean Fiber Society in 2006 and “Excellent Paper Award of 2012” by The Korean Federation of Science and Technology Societies.

Abstract:

“Green” revolution is rapidly increasing in every construction sites, especially between construction and societies’ needs. Furthermore, although durability of geosynthetics should be emphasized for long-term service period, durability controlled mechanism could be required to fulfil the short-term degradability purpose for green geosynthetics. “Green Geosynthetics” are made of eco-environmental biodegradable polymeric resins or natural materials and they must maintain their needed performance such as durability, design strength, hydraulic property etc. during service period in the application field. Then, after service period they should be degraded no harmful state in the soil structures. The important concept of green geosynthetics is focused on their degradable behaviours of used resins and needed performance for engineering qualification with technical data of designing. In this study, technical availability of green geosynthetics was introduced and reviewed to be related to the quantitative analysis of biodegradability of green geosynthetics by conceptual consideration through its evaluation. Still now, there is no international test method to evaluate the biodegradability of green geosynthetics performance and only the geosynthetics performance test methods of ISO and ASTM International are applied for this purpose. However, it is not reasonable for green geosynthetics to adopt these test methods directly and new test methods should be introduced for green geosynthetics performance testing. In this study, the regulation of evaluation method of biodegradability for green geosynthetics between index and field tests is proposed by connection key factor to confirm the biodegradable behaviors for green geosynthetics.

Speaker
Biography:

Franco Palla, is an Associate professor of Environmental and Applied Botanical Sciences at the University of Palermo, Italy. He is the Coordinator of Five-Year Degree in Conservation and Restoration of Cultural Heritage Scientific at University of Palermo. He is the Coordinator of UNIPA Research Unit at Italian Technology for Advanced Applications in Cultural Assets. He is the head of the research Laboratory of Biology and Biotechnology for Cultural Heritage (LabBBCH) at the Department of Biological, Chemical, Pharmaceutical Sciences and Technology (STEBICEF) of University of Palermo. Currently Prof. Palla is Scientific Consultant for Biological deterioration, in restoration projects regarding archaeological sites, works of art, historic-artistic manifacts. He is author and co-author of more than 200 publications in national and international scientific journals and congress proceedings, Editor of the book Biology and Biotechnology for Cultural Heritage (Springer) and Coordinator of Scientific - Organizing Committee and Chair in National and International Conference.

Abstract:

In the last decade science and technology have provided protocols in defining innovative restoration strategies. In our laboratory bioactive molecules, isolated from plants or marine organisms, are characterized and applied in order to control the microbial colonization on historic-artistic manufacts. Similarly, these molecules are able to inhibit fungal and/or bacterial growth to acting like chemical biocides. Marine organisms also represent a source of cold-active enzymes (hydrolases) useful in biocleaning/bioremoval protocols, in order to remove protein or ester layers from the artwork surfaces.
These represent valid alternatives to conventional strategies, free from negative impacts on human health and environment.